High Performance Human Face Recognition using Gabor Based Pseudo Hidden Markov Model
نویسندگان
چکیده
This paper introduces a novel methodology that combines the multi-resolution feature of the Gabor wavelet transformation (GWT) with the local interactions of the facial structures expressed through the Pseudo Hidden Markov model (PHMM). Unlike the traditional zigzag scanning method for feature extraction a continuous scanning method from top-left corner to right then top-down and right to left and so on until rightbottom of the image i.e. a spiral scanning technique has been proposed for better feature selection. Unlike traditional HMMs, the proposed PHMM does not perform the state conditional independence of the visible observation sequence assumption. This is achieved via the concept of local structures introduced by the PHMM used to extract facial bands and automatically select the most informative features of a face image. Thus, the long-range dependency problem inherent to traditional HMMs has been drastically reduced. Again with the use of most informative pixels rather than the whole image makes the proposed method reasonably faster for face recognition. This method has been successfully tested on frontal face images from the ORL, FRAV2D and FERET face databases where the images vary in pose, illumination, expression, and scale. The FERET data set contains 2200 frontal face images of 200 subjects, while the FRAV2D data set consists of 1100 images of 100 subjects and the full ORL database is considered. The results reported in this application are far better than the recent and most referred systems.
منابع مشابه
Offline Face Recognition System Based on Gabor- Fisher Descriptors and Hidden Markov Models
This paper presents a new offline face recognition system. The proposed system is built on one dimensional left-toright Hidden Markov Models (1D-HMMs). Facial image features are extracted using Gabor wavelets. The dimensionality of these features is reduced using the Fisher’s Discriminant Analysis method to keep only the most relevant information. Unlike existing techniques using 1D-HMMs, in cl...
متن کاملHidden Markov model-based face recognition using selective attention
Sequential methods for face recognition rely on the analysis of local facial features in a sequential manner, typically with a raster scan. However, the distribution of discriminative information is not unifom over the facial surface; for instance the eyes and the mouth are more informative than the cheek. We propose an extension to the sequential approach, where we take into account local feat...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملOn Performance / Robustness / Complexity Trade-offs in Face Verification
In much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose); however, a practical recognition system has to be robust to more challenging conditions. In this paper we first evaluate, on the relatively difficult BANCA database, the performance, robustness and complexity of Gaussi...
متن کاملA comparison of discrete and continuous output modeling techniques for a pseudo-2D hidden Markov model face recognition system
Face recognition has become an important topic within the field of pattern recognition and computer vision. In this field a number of different approaches to feature extraction, modeling and classification techniques have been tested. However, many questions concerning the optimal modeling techniques for high performance face recognition are still open. The face recognition system developed by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAEC
دوره 4 شماره
صفحات -
تاریخ انتشار 2013